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Singularity spectrum of the velocity increment in isotropic turbulence
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A reasonable picture of the singularity spectrum d (&) of the longitudinal velocity increment presumed
by Frisch and Parisi is given. The Kolmogorov refined similarity hypothesis is found to play a vital role
in constructing the d (h) spectrum in the entire range of 4 from the knowledge of the f () spectrum for
the three-dimensional dissipation field of turbulence. The feature of d (k) obtained for the lognormal
model is discussed in comparison with other models. Although the lognormal model itself is now known
not to be the best one, it is typical in that it is analytically treated without a numerical process and it has
a universal tendency, at least, in the right branch of d (h).

PACS number(s): 47.27.Gs, 47.53.+n, 05.45.+b, 02.50.—r

Since Frisch and Parisi [1], it has been expected that
longitudinal velocity increment |Au,| across distance r in
the inertial range in isotropic turbulence is self-similar
like to ~r" with stochastic singularity strength A, and
that the interwoven spatial set supporting a value of &
makes a fractal with the dimension d (%), which is often
called the singularity spectrum of Au,. Although wavelet
analysis [2] was anticipated as a powerful tool for directly
measuring the spatial distribution of 2 and hence d(4),
the perfect form of d (h) does not yet seem to have been
fixed. To be sure, Muzy, Bacry, and Arneodo [3] reached
a conclusion about a picture of d(h) which was con-
sistent with a transformed form of the f(a) spectrum for
the dissipation field of turbulence in a one-dimensional
(1D) cut by Meneveau and Sreenivasan [4]. However,
there still remains the problem that if we find the max-
imum of & (h,,, apparently close to 0.6) that way, we
can never find (a finite amount of the probability of)
|Au,| =0 for a finite value of r in the inertial range since
h cannot go to o (and since the Holder constant is never
presumed to be zero). This is in contradiction to fact;
indeed, it is well known that the probability density func-
tion (PDF) of Au, is finite and smooth at the origin [5,6],
suggesting that h_,, should be oo. Therefore, the
behavior of at least the right branch of d(A) presented
there is irrational.

This paper presents a reasonable picture of d (k) over a
whole region of # on the basis of the Kolmogorov refined
similarity hypothesis (RSH) [7] and the 3D f(a) spec-
trum given by the lognormal model [7,8]. The lognormal
model prescribes that the random multiplier in the cas-
cade process of energy dissipation distributes lognormal-
ly. It is well known that this model has flaws [9-11]: it
violates the Novikov constraint and the gth-order inter-
mittency exponents predicted by the model increase too
rapidly with |g| [12]. However, we notice here that it is
probably the only model possible to give the analytical
expression of d (h), and that it is still reliable in predict-
ing low-order intermittency exponents [13,14]. Therefore
it is meaningful to give the d () of the lognormal model
first, and compare it with that of other improved models
next. This will clarify which part of the d () of the log-
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normal model should be unreliable and, conversely,
which other part be reliable.

First we note a delicate statistical difference between
Au, and (re,)!”? (e, is the dissipation rate averaged over
a sphere with the diameter of r), from which the
difference of f(a) and d (k) will arise. The Kolmogorov
RSH implies that

Au,=v(re,)'?, (1)

where v is a universal stochastic variable independent of r
and €, in the inertial range of r. In accordance with re-
cent experimental evidence [15,16], the PDF of v, P (v), is
nearly Gaussian with the zero mean. Thus we can ex-
press the PDF of Au, in terms of a production sum of
two independent PDF’s of v and x =(re,)!/? as

p3(Au)= [ P(Au,/x)/xp,(x)dx . 2)

This is a statistical expression for the Kolmogorov RSH
[although he did not specify P(v) to be Gaussian]. The
exact form of p,(x) is already known for many models of
isotropic turbulence [17].

Consider the pth-order moments of both sides of (1),
and we have

[ 18w, Pp5(Au,)dAu,= [ [ |v]?xPP(v)p,(x)dv dx
o:rP/3"‘l‘(P/3) , (3)

where u(g) is the gth-order intermittency exponent,
which implies ((g,/g,)?)=(r/D)"™? for any ratio of
r/l <1, when a domain of scale r is included in a domain
of [; the concept of u(q) was introduced by Novikov [10],
with the terminology of scale similarity of dissipation
measure. Usually, the exponent of the right-hand side is
called {(p); that is

Ep)=p/3—ulp/3). 4)

Here p must be limited to be greater than —1. Some neg-
ative value of p can be allowed since p;(Au, ) is finite and
continuous at Au, =0. It is well known that u(q) is relat-
ed to the f(a) spectrum through the Legendre transfor-
mation:
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—u(g@)=3—fla)+gla—1),
(5)
g=f'(a) .

[The usual expression [18] in terms of generalized dimen-
sions D(q) is regenerated by wusing the relation
(D(q)—3)g—1)=—pulq).] In a similar way, we may
have the Legendre transformation [1] which relates {(p)
to the d (k) spectrum,

§(p)=3—d(h)+ph ,

p=d'(h) . (6)
Since Egs. (4), (5), and (6) are isomorphic,

d(h)=f(3h) (7

is obtained, so far as p=d'(h)> —1.

The analytical form of f(a) can be obtained easily for
the lognormal model. First, for the lognormal model, we
know that

Py (x)=3/[(2m)"%sx ]
Xexp[—(3Inx —Inr —u1nr/2)?/(2s)], (8)

with s2= —puInr [17]. (u is the second-order intermitten-
cy exponent u,.) Here x and 7 are normalized by (Le; )3
and L. (L is the main scale.) Second, we transform the
variable x to a by the self-similar relation x3=r¢

(equivalent to €,=r%"!). Then we have the PDF of a:
p4(a;r)=[|1nr|/(277/.L)]1/2r("_1_"/2)2/2" . 9)
This means that
flay=—(a—1—p/2)*2u+3, (10)

in accordance with the general formula for the PDF of
exponent a of a scale-similar measure [13,19,20]

Pla;r)=r3" 19| f"(a)nr|1/(2m)]"? asr—0. (11)

Thus the form of d (h) can be known through (7) until
p=d’'(h) arrives at —1, that means ¢ = —1. It is easy to
derive from (7) and (10) that the limiting point is located
at ((1+5u1/6)/3,3—u/18) in the h-d plane. Beyond this
point (7) is obviously illusive. The next important prob-
lem is, thus, how to grasp the behavior of d(h) for a
larger A toward .

We consider (2) again with (8), changing the variable
|Au,| to r" and x to r%/3. Then we obtain the PDF of A

psthsr)=r"(|Inr|)*2(mou'’?)
><fr“"”exp[—r2<h*a/3)/(2a)2
+a—1—u/2)nr/2u)lda . (12)

Here o is the standard deviation of a Gaussian function
P (v) which solely depends on how to normalize Au,. For
a very small r the integrand in (12) almost vanishes for
a>3h, so that the integral may be written as
f3hr7“/3exp[(a—1—,u/2)21nr/(2,u)]da. This can be
estimated by the saddle point method on the condition
that the saddle point a, should be less than 34. Since

a,=1+5u/6, we have

Ps(h ;r)z(z/ﬂ_)l/l/a_rh“nr|r‘*1/3—2;1./9~r3*‘d(h) (13)

only for A >a,./3=(1+5u/6)/3, and, hence,
dh)=3—h+1+2u/9 (14)

there. Since d(a,/3)=3—u/18, this straight line with
d'(h)=—1 smoothly connects to the d(h) curve
prescribed in the preceding paragraph just at its limiting
point.

Thus it is evident that the d (k) curve for the lognor-
mal model of isotropic turbulence is composed of the par-
abolic curve given by (7) and (10) as the left branch, and
the straight line tangent to that with the gradient —1 as
the right branch. This is the exact implication of (12),
which comes from (2). On this d (h) curve, naturally we
have no possibility of having p < —1, while 4 itself can be
infinitely large. It is the right branch of d (h) smoothly
grafted by (13) that governs the behavior of p;(Au,) near
Au,=0. The same thing is true for many other models.
This feature of the d (h) spectrum was already verified for
the 3D binomial Cantor set model [13] partially with a
numerical process [21], although the left branch is no
longer parabolic in this case. Since the mathematical
structure of this model is similar to all binomial Cantor
set models [13], including the p model [4] and the random
B model [22,23], the same feature of the d (h) spectrum
will be easily identified for such models. Most of the
right branch may be called the “regularity spectrum” of
the velocity increment, since 4 = 1 indicates no singulari-
ty.
The real d (h) for isotropic turbulence may be conjec-
tured from the 3D f(a) spectrum obtained by a direct
numerical simulation (DNS), which treats a decaying tur-
bulence [12]. Another recent DNS (treating a forced tur-
bulence) by Chen supports very closely this result for a
wide range of Taylor-scale Reynolds numbers [24]. [We
note that his f(a) is Reynolds number independent.] Ac-
cording to these, we have no negative h since the lower
limit of a is positive, where f seems to accumulate to a
finite value as g — . Therefore the parabola as the left
branch given by the lognormal model is not suitable par-
ticularly for small a and then A. However, as is well
known, the lognormal model is a very good approxima-
tion for small |q|; in fact, there is no difference seen be-
tween the DNS result and the lognormal model in the
neighborhood of the summit of f(a), which corresponds
to small |g| [12]. Then we can consider that the right
branch of d (%) that the lognormal model brings forth is
reliable, since the limiting point 2 =a_ /3 is very near the
summit point, A=(1+p/2)/3. In other words, the
tangent lines with d’(A)= —1 that all reasonable models
bring forth must nearly collapse. The result of the 3D bi-
nomial Cantor set model is satisfactory on this point, and
also the behavior of the left branch of its d (k) improves
that of the lognormal model remarkably [21].

It is not surprising that d (h) is negative for large .
The true sense of negative fractal dimension (beyond the
Hausdorff dimension) was often explained by Mandelbrot
[25], and even an experimental pursuit of the negative
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part of f(a) was made by Chhabra and Sreenivasan [26].
It is sufficient here to understand that the probability of
finding the set supporting 4 in space is extremely rare if
d (h) is negative; the rarer, the more negative. Recently,
Mandelbrot [27] proposed a similar straight-line match-
ing with the parabola of the lognormal model as a new
model. But he treated f(a) not d (), and the matching
was made on the left branch of f(a). Therefore the phys-

ical content of his model is quite different from that of
the present problem.

Finally we add that the reliability of formulating
p3(Au,) essentially based on RSH was already acknowl-
edged in comparison with DNS [17,28] and experiment
[29]. This fact indirectly shows that the d(A) spectrum
just considered for |Au,|=r" on the RSH basis has
sufficient reality.
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